skip to main content


Search for: All records

Creators/Authors contains: "Raugei, Simone"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Study of α-V70I-substituted nitrogenase MoFe protein identified Fe6 of FeMo-cofactor (Fe 7 S 9 MoC-homocitrate) as a critical N 2 binding/reduction site. Freeze-trapping this enzyme during Ar turnover captured the key catalytic intermediate in high occupancy, denoted E 4 (4H), which has accumulated 4[e − /H + ] as two bridging hydrides, Fe2–H–Fe6 and Fe3–H–Fe7, and protons bound to two sulfurs. E 4 (4H) is poised to bind/reduce N 2 as driven by mechanistically-coupled H 2 reductive-elimination of the hydrides. This process must compete with ongoing hydride protonation (HP), which releases H 2 as the enzyme relaxes to state E 2 (2H), containing 2[e − /H + ] as a hydride and sulfur-bound proton; accumulation of E 4 (4H) in α-V70I is enhanced by HP suppression. EPR and 95 Mo ENDOR spectroscopies now show that resting-state α-V70I enzyme exists in two conformational states, both in solution and as crystallized, one with wild type (WT)-like FeMo-co and one with perturbed FeMo-co. These reflect two conformations of the Ile residue, as visualized in a reanalysis of the X-ray diffraction data of α-V70I and confirmed by computations. EPR measurements show delivery of 2[e − /H + ] to the E 0 state of the WT MoFe protein and to both α-V70I conformations generating E 2 (2H) that contains the Fe3–H–Fe7 bridging hydride; accumulation of another 2[e − /H + ] generates E 4 (4H) with Fe2–H–Fe6 as the second hydride. E 4 (4H) in WT enzyme and a minority α-V70I E 4 (4H) conformation as visualized by QM/MM computations relax to resting-state through two HP steps that reverse the formation process: HP of Fe2–H–Fe6 followed by slower HP of Fe3–H–Fe7, which leads to transient accumulation of E 2 (2H) containing Fe3–H–Fe7. In the dominant α-V70I E 4 (4H) conformation, HP of Fe2–H–Fe6 is passively suppressed by the positioning of the Ile sidechain; slow HP of Fe3–H–Fe7 occurs first and the resulting E 2 (2H) contains Fe2–H–Fe6. It is this HP suppression in E 4 (4H) that enables α-V70I MoFe to accumulate E 4 (4H) in high occupancy. In addition, HP suppression in α-V70I E 4 (4H) kinetically unmasks hydride reductive-elimination without N 2 -binding, a process that is precluded in WT enzyme. 
    more » « less
    Free, publicly-accessible full text available July 19, 2024
  2. null (Ed.)
  3. Nitrogenase is the enzyme that catalyzes biological N2 reduction to NH3. This enzyme achieves an impressive rate enhancement over the uncatalyzed reaction. Given the high demand for N2 fixation to support food and chemical production and the heavy reliance of the industrial Haber–Bosch nitrogen fixation reaction on fossil fuels, there is a strong need to elucidate how nitrogenase achieves this difficult reaction under benign conditions as a means of informing the design of next generation synthetic catalysts. This Review summarizes recent progress in addressing how nitrogenase catalyzes the reduction of an array of substrates. New insights into the mechanism of N2 and proton reduction are first considered. This is followed by a summary of recent gains in understanding the reduction of a number of other nitrogenous compounds not considered to be physiological substrates. Progress in understanding the reduction of a wide range of C-based substrates, including CO and CO2, is also discussed, and remaining challenges in understanding nitrogenase substrate reduction are considered. 
    more » « less
  4. Recent spectroscopic, kinetic, photophysical, and thermodynamic measurements show activation of nitrogenase for N2→ 2NH3reduction involves the reductive elimination (re) of H2from two [Fe–H–Fe] bridging hydrides bound to the catalytic [7Fe–9S–Mo–C–homocitrate] FeMo-cofactor (FeMo-co). These studies rationalize the Lowe–Thorneley kinetic scheme’s proposal of mechanistically obligatory formation of one H2for each N2reduced. They also provide an overall framework for understanding the mechanism of nitrogen fixation by nitrogenase. However, they directly pose fundamental questions addressed computationally here. We here report an extensive computational investigation of the structure and energetics of possible nitrogenase intermediates using structural models for the active site with a broad range in complexity, while evaluating a diverse set of density functional theory flavors. (i) This shows that to prevent spurious disruption of FeMo-co having accumulated 4[e/H+] it is necessary to include: all residues (and water molecules) interacting directly with FeMo-co via specific H-bond interactions; nonspecific local electrostatic interactions; and steric confinement. (ii) These calculations indicate an important role of sulfide hemilability in the overall conversion ofE0to a diazene-level intermediate. (iii) Perhaps most importantly, they explain (iiia) how the enzyme mechanistically couples exothermic H2formation to endothermic cleavage of the N≡N triple bond in a nearly thermoneutralre/oxidative-addition equilibrium, (iiib) while preventing the “futile” generation of two H2without N2reduction: hydrideregenerates an H2complex, but H2is only lost when displaced by N2, to form an end-on N2complex that proceeds to a diazene-level intermediate.

     
    more » « less